$\mathrm{C}(6)$	$0.7629(2)$	$0.03190(4)$	$0.1665(3)$	$0.0185(4)$
$\mathrm{C}(7)$	$0.7390(2)$	$0.00035(4)$	$0.3338(3)$	$0.0184(4)$
$\mathrm{C}(8)$	$0.7566(2)$	$-0.03184(4)$	$0.1694(3)$	$0.0185(4)$
$\mathrm{C}(9)$	$0.7315(2)$	$-0.06341(4)$	$0.3348(3)$	$0.0183(4)$
$\mathrm{C}(10)$	$0.7481(2)$	$-0.09552(4)$	$0.1699(3)$	$0.0215(4)$
$\mathrm{C}(11)$	$0.7212(2)$	$-0.12701(4)$	$0.3 .342(4)$	$0.0274(5)$

Table 2. Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$

$\mathrm{N}(1)-\mathrm{C}(1)$	$1.494(2)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.522(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.514(2)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.524(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.525(2)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.521(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.520(2)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.521(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.524(2)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.519(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.526(2)$		
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$111.3(1)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$113.8(1)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$111.7(1)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$113.8(1)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$113.3(1)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$113.9(1)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$113.8(1)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$113.9(1)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$113.6(1)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$113.8(1)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$		$179.4(1)$	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-170.0(1)$		
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$178.1(1)$		
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-177.9(1)$		
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$179.4(1)$		
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-179.9(1)$		
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-179.6(1)$		
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$179.7(1)$		
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-179.4(1)$		

Table 3. Contact distances (\AA)

$\mathrm{Cl}(1) \cdots \mathrm{N}(1)$	$3.209(1)$	$\mathrm{O}(1) \cdots \mathrm{N}(1)$	$2.845(2)$
$\mathrm{Cl}(1) \cdots \mathrm{N}\left(1^{1}\right)$	$3.235(2)$	$\mathrm{Cl}(1) \cdots \mathrm{O}\left(1^{\prime \prime \prime}\right)$	$3.180(1)$
$\mathrm{Cl}(1) \cdots \mathrm{N}\left(1^{\prime \prime}\right)$	$3.353(1)$	$\mathrm{Cl}(1) \cdots \mathrm{O}\left(1^{\prime \prime}\right)$	$3.226(1)$

Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}-y, 1+z$; (ii) $x, y, 1+z$; (iii) $x-\frac{1}{2}, \frac{1}{2}-y, z$; (iv) $x-\frac{1}{2}, \frac{1}{2}-y, 1+z$.

The crystal used for analysis was cooled with an Oxford Cryostream system (Cosier \& Glazer, 1986).

Data collection: MSC/AFC Diffractometer Control Softw'are (Molecular Structure Corporation, 1993a). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1993b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: TEXSAN. Molecular graphics: TEXSAN. Software used to prepare material for publication: TEXSAN.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CF1038). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square. Chester CHl 2HU. England.

References

Ciajolo, M. R., Corradini, P. \& Pavone, V. (1986). Gazz. Chim. Ital. 106. 807-816.

Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Gault, J. D., Gallardo, H. A. \& Muller, H. J. (1985). Mol. Cryst. Liq. Cryst. 130, 163-177.
Gilson, D. F. R., Kertes, A. S., Manley, R. St. J., Tsau, J. \& Donnay, G. (1976). Can. J. Chem. 54, 765-768.

Kind, R., Blinc, R., Arend. H., Muralt, P., Slak, J., Chapuis, G., Schenk, K. J. \& Žckš, B. (1982). Phys. Reי'. A, 26, 1816-1819.
Molecular Structure Corporation (1993a). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1993b). TEXSAN. Single Crystal Structure Analysis Sofiware. Version 1.6c. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA

Pinto, A. V. A., Vencato, l., Gallardo, H. \& Mascarenhas, Y. P. (1987). Mol. Cryst. Liq. Cryst. 149, 29-40.
Schenk, K. J. \& Chapuis, G. (1986). Acta Cryst. C42, 1076-1078.
Seliger, J., Žagra, V., Blinc, R., Arend, H. \& Chapuis, G. (1983). J. Chem. Phys. 78, 2661-2664.
Sheldrick. G. M. (1990). Acta Cryst. A46, 467-473.
Silver, J., Marsh, P. J. \& Frampton, C. S. (1995). Acta Cryst. C51, 2432-2434.

Acta Cryst. (1996). C52, 1263-1266

The Guaianolide $\mathbf{1 1} \beta \boldsymbol{\beta}, 13$-Dihydromicheliolide

Jose Castañeda-Acosta, Nikolaus H. Fischer and Frank R. Fronczek

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA. E-mail: fronz@chxray.dnet.Isu. edu
(Received 30 August 1995; accepted 10 November 1995)

Abstract

The lactone ring of the guaianolide-class sesquiterpene lactone [$3 S$-($3 \alpha, 3 \mathrm{a} \alpha, 9 \alpha, 9 \mathrm{a} \alpha, 9 \mathrm{~b} \beta$)]-3a,4,5,7,8,9,9a,9b-octa-hydro-9-hydroxy-3,6,9-trimethylazuleno[4,5-b]furan-2(3 H)-one, $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$, is trans-fused to the sevenmembered ring. Two molecules are present in the asymmetric unit; they differ only slightly in conformation. The seven-membered ring is in the chair conformation, with the local mirror bisecting the double bond. The lactone is in the envelope conformation, while the other five-membered ring adopts the half chair. The two independent molecules form a hydrogen-bonded dimer,

 with $\mathrm{O} \cdots \mathrm{O}$ distances 2.907 (3) and 2.966 (2) \AA.
Comment

$11 \beta H, 13$-Dihydromicheliolide, (1), is the major compound obtained from the BF_{3}-mediated rearrangement of $11 \beta H, 13$-dihydroparthenolide (Parodi, Fronczek \& Fischer, 1989). The crystal structure of (1) was determined in order to confirm the relative configurations of the five asymmetric C atoms, and to compare its conformation and hydrogen bonding with those of micheliolide (Castañeda-Acosta, Fronczek \& Fischer, 1991). The two independent molecules of the asymmetric unit have very similar conformations. The 17 endocyclic torsion angles of the two exhibit a mean difference of 3.4°, with the largest deviation, about C9-C10, of $8.4(2)^{\circ}$. The most notable conformational difference between the two molecules involves the OH group, in which the O H bond is anti to C 3 in the A molecule and anti to C 5 in
the B molecule, in order to maximize hydrogen-bonding interactions, as described below. The overall conformation is similar to that of micheliolide (Castañeda-Acosta et al., 1991), except for that of the lactone ring, which is a half chair in micheliolide. Bond distances for the two independent molecules (Table 2) agree well. The r.m.s. difference in the 20 intramolecular distances is $0.006 \AA$, and the largest individual difference is 0.012 (4) \AA for $\mathrm{O} 3-\mathrm{C} 4$.

(1)

The two independent molecules form hydrogenbonded dimers, as illustrated in Fig. 1. OH group O3A donates an intermolecular hydrogen bond to OH group $\mathrm{O} 3 B$, with an $\mathrm{O} \cdots \mathrm{O}$ distance of 2.907 (3) \AA and an angle about H of $164(4)^{\circ}$. The OH group of the $B \mathrm{~mol}-$ ecule is involved in an intermolecular interaction which may be viewed as a bifurcated hydrogen bond. Its shortest contact $[2.966(2) \AA$] is to $\mathrm{Ol} A$; however, the angle about H is $140(3)^{\circ}$. The H atom points more nearly at the carbonyl O atom $\mathrm{O} 2 A$, with an $\mathrm{O}-\mathrm{H} \ldots \mathrm{O}$ angle of $166(3)^{\circ}$ and a $\mathrm{O} \cdots \mathrm{O}$ distance of $3.406(3) \AA$.

It may be noted that there exists an alternate possible mode of hydrogen-bonded dimer formation, namely that with the two OH groups with switched donor

Fig. 1. The two independent molecules, with ellipsoids at the 40% probability level and H atoms represented with arbitrary radii.
and acceptor identities, and O3A donating a bifurcated interaction to $\mathrm{O} 1 B$ and $\mathrm{O} 2 B$. That mode is not utilized in this structure; however, micheliolide exhibits similar dimer formation, and the two modes coexist with disordered H -atom positions (Castañeda-Acosta et al., 1991). The two molecules are not independent, but are related by a twofold axis in that case.

Fig. 2 illustrates the packing, which features an approximate 21 screw axis parallel to the a axis at $y=0.83, z=0.05$. The screw axis is inexact, with the mean deviation of the 18 heavy atoms in molecule A and their equivalents in molecule B of $1.40 \AA$. The largest difference, $3.43 \AA$, is for O 3 , as a result of the difference in hydrogen bonding. The approximate screw axis is much more exact when atoms in the vicinity of O 3 are excluded. The 14 atoms remaining when $\mathrm{C} 3, \mathrm{C} 4$, C 15 and O 3 are excluded exhibit a mean deviation of 0.95 Å.

Fig. 2. Projection of the structure down the a axis, illustrating the approximate 21 screw axis.

The structures of several closely related compounds have been reported. These include arteglasin A (Schmalle, Klaska \& Jarchow, 1977), berlandin (Cox, Sim \& Herz, 1975), 3α-epoxypumilin (Seaman, Malcolm, Fronczek, Lee \& Fischer, 1984), 9 α-thiophenoxy$11 \beta H, 13$-dihydromicheliolide (Castañeda-Acosta, Fronczek \& Fischer, 1992), and pumilin (Korp et al., 1982).

Experimental

Compound (1) was prepared by the BF_{3}-mediated rearrangement of $11 \beta H, 13$-dihydroparthenolide (Parodi, Fronczek \& Fischer, 1989). Crystals were grown from ethyl acetatehexane.

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$
Mo $K \alpha$ radiation
$M_{r}=250.34$
$\lambda=0.71073 \AA$
Triclinic
$P 1$
$a=8.5033(8) \AA$
$b=8.8856(6) \AA$
$c=10.773(1) \AA$
$\alpha=101.29(1)^{\circ}$
$\beta=97.70(1)^{\circ}$
$\gamma=118.42(1)^{\circ}$
$V=677.2(3) \AA^{3}$
$Z=2$
$D_{x}=1.228 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
none
3099 measured reflections
3099 independent reflections
2776 observed reflections
$[I>2 \sigma(I)]$
Refinement
Refinement on F
$R=0.040$
$w R=0.048$
$S=2.72$
2776 reflections
331 parameters
H atoms: see below
$w=4 F_{o}^{2} /\left[\sigma^{2}\left(F_{o}^{2}\right)\right.$
$\left.+0.0004 F_{o}^{4}\right]$
$(\Delta / \sigma)_{\text {max }}=0.014$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.06 \mathrm{e}^{-3}$
Extinction correction: isotropic (Zachariasen, 1963)

Extinction coefficient:
$0.13(2) \times 10^{-5}$
Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$$
U_{\text {iso }} \text { for } \mathrm{H} \text { atoms; } U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j} \text { for all others. }
$$

	x	y	z	$U_{\text {eq }} / U_{\text {iso }}$
OIA	0.0000	0.0000	0.0000	0.0467 (5)
O2A	-0.0228 (3)	-0.0571 (2)	0.1897 (2)	0.0669 (7)
03A	-0.0534 (2)	0.2618 (2)	-0.1212 (2)	0.0527 (5)
C1A	-0.0774 (3)	-0.0988 (2)	-0.3707 (2)	0.0362 (6)
C2A	-0.0151 (3)	0.0525 (3)	-0.4327 (2)	0.0483 (7)
C3A	-0.0274 (4)	0.1977 (3)	-0.3402 (2)	0.0503 (7)
C4A	0.0209 (3)	0.1812 (2)	-0.2044 (2)	0.0417 (6)
C5A	-0.0845 (3)	-0.0262 (2)	-0.2315 (2)	0.0340 (5)
C6A	-0.0123 (3)	-0.0924 (2)	-0.1327 (2)	0.0351 (6)
C7A	-0.1314 (3)	-0.2894 (2)	-0.1422 (2)	0.0359 (6)
C8A	-0.1095 (3)	-0.4125 (3)	-0.2490 (2)	0.0483 (7)
C9A	-0.1974 (4)	-0.4276 (3)	-0.3868 (3)	0.0553 (8)
C10A	-0.1213 (3)	-0.2644 (3)	-0.4352 (2)	0.0396 (6)
C1IA	-0.0736 (3)	-0.2906 (2)	-0.0035 (2)	0.0422 (6)
C12A	-0.0305 (3)	-0.1085 (3)	0.0763 (2)	0.0452 (7)
C13A	-0.2097 (4)	-0.4446 (3)	0.0382 (3)	0.0605 (9)
C14A	-0.1045 (3)	-0.3047 (3)	-0.5735 (2)	0.0483 (7)
C15A	0.2281 (4)	0.2694 (3)	-0.1507 (3)	0.0553 (8)

> Cell parameters from 25 reflections
> $\theta=9-13^{\circ}$
> $\mu=0.078 \mathrm{~mm}^{-1}$
> $T=299 \mathrm{~K}$

Needle fragment
$0.75 \times 0.52 \times 0.42 \mathrm{~mm}$ Colorless
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 11$
$k=-11 \rightarrow 10$
$l=-13 \rightarrow 13$
3 standard reflections frequency: 120 min intensity decay: $<1 \%$
$\begin{array}{lllll}C 15 A & 0.2281(4) & 0.2694(3) & -0.1507(3) & 0.0553(8)\end{array}$

O1B	$0.4020(2)$	$0.6677(2)$	$0.1061(2)$	$0.0508(5)$
O2B	$0.4767(3)$	$0.7420(3)$	$-0.0721(2)$	$0.0864(9)$
O3B	$0.0829(2)$	$0.3534(2)$	$0.1612(2)$	$0.0534(6)$
C1B	$0.3384(3)$	$0.7353(3)$	$0.4525(2)$	$0.0399(6)$
C2B	$0.2845(4)$	$0.5835(3)$	$0.5131(3)$	$0.0611(9)$
C3B	$0.1521(4)$	$0.4166(3)$	$0.3989(3)$	$0.0575(8)$
C4B	$0.2282(3)$	$0.4567(3)$	$0.2817(2)$	$0.0414(6)$
C5B	$0.2876(3)$	$0.6567(2)$	$0.3034(2)$	$0.0352(6)$
C6B	$0.4410(3)$	$0.7632(2)$	$0.2438(2)$	$0.0367(6)$
C7B	$0.4691(3)$	$0.9435(2)$	$0.2378(2)$	$0.0360(6)$
C8B	$0.5605(3)$	$1.0892(3)$	$0.3682(2)$	$0.0444(7)$
C9B	$0.4385(4)$	$1.0557(3)$	$0.4624(3)$	$0.0524(8)$
C10B	$0.4050(3)$	$0.9061(3)$	$0.5216(2)$	$0.0426(7)$
C11B	$0.5693(3)$	$0.9756(3)$	$0.1310(2)$	$0.0445(7)$
C12B	$0.4810(4)$	$0.7872(3)$	$0.0405(2)$	$0.0539(8)$
C13B	$0.5613(5)$	$1.1050(3)$	$0.0614(3)$	$0.069(1)$
C14B	$0.4356(4)$	$0.9589(4)$	$0.6690(3)$	$0.0586(9)$
C15B	$0.3829(4)$	$0.4192(3)$	$0.2768(3)$	$0.0581(8)$
H3OA	$0.006(4)$	$0.288(4)$	$-0.040(3)$	$0.08(1)$
H3OB	$0.056(4)$	$0.244(4)$	$0.153(3)$	$0.09(1)$

Table 2. Selected geometric parameters (\AA, $^{\circ}$)

O1A-C6A	1.465 (2)	$01 B-\mathrm{C} 6 B$	1.462 (3)
$\mathrm{O} 1 A-\mathrm{Cl} 2 A$	1.343 (3)	O1 $B-\mathrm{C} 12 B$	1.350 (3)
$\mathrm{O} 2 A-\mathrm{C} 12 A$	$1.198(3)$	$\mathrm{O} 2 B-\mathrm{C} 12 B$	1.191 (3)
$\mathrm{O} 3 A-\mathrm{C} 4 A$	1.430 (3)	O3B-C4B	1.442 (3)
$\mathrm{O} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{OA}$	0.88 (3)	$\mathrm{O} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{O} B$	0.87 (4)
C1A-C2A	1.517 (3)	$C 1 B-C 2 B$	1.515 (4)
C1A-C5A	1.533 (3)	C1B-C5B	1.530 (3)
$\mathrm{Cl} A-\mathrm{C10A}$	1.340 (3)	$\mathrm{C} 1 B-\mathrm{C} 10 B$	1.343 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	1.524 (4)	C2B-C3B	1.518 (3)
C3A-C4A	1.520 (4)	$\mathrm{C} 3 B-\mathrm{C} 4 B$	1.522 (4)
C4A-C5A	1.559 (3)	C4B-C5B	1.555 (3)
$\mathrm{C} 4 A-\mathrm{C15A}$	1.512 (4)	$\mathrm{C} 4 B-\mathrm{C} 15 B$	1.508 (5)
C5A-C6A	1.507 (4)	C5B-C6B	1.515 (3)
C6A-C7A	1.521 (3)	C6B-C7B	1.519 (3)
C7A-C8A	1.522 (4)	C7B-C8B	1.513 (3)
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	1.513 (3)	$C 7 B-C 11 B$	1.514 (4)
C8A-C9A	$1.520(4)$	C8B-C9B	1.516 (4)
C9A-C10A	1.513 (4)	C9B-C10B	1.509 (4)
C10A-C14A	1.505 (4)	C10B-C14B	1.514 (4)
C11A-C12A	1.516 (3)	C11B-C12B	1.511 (3)
C11A-C13A	1.512 (3)	C11B-C13B	1.513 (5)
$\mathrm{C} 6 A-\mathrm{OlA}-\mathrm{C12A}$	110.3 (1)	$\mathrm{C} 6 B-\mathrm{O} 1 B-\mathrm{C} 12 B$	109.4 (2)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{O} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{O} A$	$108(2)$	$\mathrm{C} 4 B-\mathrm{O} 3 B-\mathrm{H} 3 \mathrm{O} B$	103 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 A-\mathrm{C} 5 A$	107.8 (2)	$\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{C} 5 B$	108.5 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C1م} \mathrm{~A}$	122.6(2)	$\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{ClOB}$	123.6 (2)
$\mathrm{C} 5 A-\mathrm{Cl} A-\mathrm{ClOA}$	129.5 (2)	$\mathrm{C} 5 B-\mathrm{C} 1 B-\mathrm{C} 10 B$	127.7 (2)
$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 \mathrm{~A}$	104.5 (2)	$\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B$	103.9 (2)
$\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A$	104.8 (2)	$\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{C} 4 B$	104.5 (2)
$\mathrm{O} 3 A-\mathrm{C} 4 A-\mathrm{C} 3 A$	107.6 (2)	$\mathrm{O} 3 B-\mathrm{C} 4 B-\mathrm{C} 3 B$	110.6 (2)
$\mathrm{O} 3 \mathrm{~A}-\mathrm{C} 4 A-\mathrm{C} 5 A$	111.5 (2)	$\mathrm{O} 3 B-\mathrm{C} 4 B-\mathrm{C} 5 B$	107.5 (2)
O3A-C4A-CI5A	111.1 (2)	O3B-C4B-C15B	110.0 (2)
C 3 A-C4A-C5A	101.8(2)	$\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 5 B$	102.7 (2)
$\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{CI5A}$	111.4 (2)	$\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 15 B$	111.1 (3)
C5A-C4A-C15A	113.0 (2)	C5B-C4B-C15B	114.6 (2)
C1A-C5A-C4A	104.4 (2)	$\mathrm{ClB}-\mathrm{C} 5 B-\mathrm{C} 4 B$	104.3 (2)
C1A-C5A-C6A	112.8 (2)	$\mathrm{ClB}-\mathrm{C} 5 B-\mathrm{C} 6 B$	112.5 (1)
C4A-C5A-C6A	115.5 (1)	$\mathrm{C} 4 B-\mathrm{C} 5 B-\mathrm{C} 6 B$	116.3 (2)
O1A-C6A-C5A	109.9(2)	$\mathrm{O} 1 B-\mathrm{C} 6 B-\mathrm{C} 5 B$	110.9 (1)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	103.1 (2)	$01 B-\mathrm{C} 6 B-\mathrm{C} 7 B$	102.9 (2)
C5A-C6A-C7A	116.8 (2)	$\mathrm{C} 5 B-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 B$	116.1 (2)
C6A-C7A-C8A	112.9 (2)	C6B-C7B-C8B	114.9 (2)
C6A-C7A-C11A	102.4 (1)	$\mathrm{C} 6 B-\mathrm{C} 7 B-\mathrm{C} 11 B$	101.5 (2)
$\mathrm{C} 8 A-\mathrm{C} 7 A-\mathrm{Cl1A}$	115.8(2)	$C 8 B-C 7 B-C 11 B$	117.1 (2)
C7A-C8A-C9A	113.2 (3)	$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 8 B-\mathrm{C} 9 B$	113.0 (2)
C 8 - $-\mathrm{C} 9 \mathrm{~A}-\mathrm{C10A}$	119.7 (2)	$C 8 B-\mathrm{C} 9 B-\mathrm{ClOB}$	117.8 (3)
$\mathrm{ClA}-\mathrm{C10A}-\mathrm{C} 9 \mathrm{~A}$	127.0 (2)	$\mathrm{ClB}-\mathrm{C10B-C9B}$	124.8(2)
C1A-C10A-C14A	119.9 (2)	$\mathrm{ClB}-\mathrm{ClO}-\mathrm{C} 14 B$	120.8 (2)
C9A-C10A-C14A	112.9 (2)	$\mathrm{C} 9 B-\mathrm{C10B}-\mathrm{C} 14 B$	114.2 (2)
C7A-C11A-C12A	101.8(2)	$\mathrm{C} 7 B-\mathrm{C} 11 B-\mathrm{C} 12 B$	101.5 (2)
C7A-C11A-C13A	116.9(2)	C7B-C11B-C13B	117.3 (3)
$\mathrm{C12A}-\mathrm{Cl1A}-\mathrm{Cl} 3 A$	113.7 (2)	$\mathrm{C12B-C11B-C13B}$	113.1 (2)
$\mathrm{O} 1 A-\mathrm{C} 12 A-\mathrm{O} 2 A$	120.9 (2)	$\mathrm{O} 1 B-\mathrm{Cl} 2 B-\mathrm{O} 2 B$	122.2 (2)
$\mathrm{O} 1 A-\mathrm{Cl} 2 A-\mathrm{C} 11 A$	109.8 (2)	$\mathrm{O1} B-\mathrm{C12B-C11B}$	109.8 (2)
$\mathrm{O} 2 A-\mathrm{Cl} 2 A-\mathrm{Cll} A$	129.4 (2)	$\mathrm{O} 2 B-\mathrm{Cl} 2 B-\mathrm{Cl1B}$	128.0 (3)

The structure was solved by direct methods using RANTAN (Yao, 1981) and DIRDIF (Beurskens, 1984). An E map generated using RANTAN contained a recognizable fragment of one of the two independent molecules. DIRDIF was used to expand this fragment to the full structure. The OH H atoms were refined with isotropic displacement parameters, while others were placed in calculated positions guided by difference maps, with $\mathrm{C}-\mathrm{H} 0.95 \AA$ and $B_{\text {iso }}(\mathrm{H})=1.3 B_{\mathrm{eq}}(\mathrm{C})$.

Data collection: CAD-4 diffractometer system (EnrafNonius, 1977). Cell refinement: CAD-4 diffractometer system. Data reduction: PROCESS in MolEN (Fair, 1990). Program(s) used to refine structure: $L S F M$ in MolEN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: CIF IN in MolEN.

The purchase of the diffractometer was made possible by a National Science Foundation chemical instrumentation grant, which we gratefully acknowledge. JCA thanks the Government of the Canary Islands and the Caja General de Ahorros de Canarias (Spain) for a fellowship. This research was supported by the Louisiana Education Quality Support Fund (86-89)-RD-A-13 and by the National Science Foundation Biotechnology Program (project No. EET-8713078).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry, along with a stereodrawing of the packing, have been deposited with the IUCr (Reference: BK1193). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Square, Chester CHI 2HU, England.

References

Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures - an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
Castañeda-Acosta, J., Fronczek, F. R. \& Fischer, N. H. (1991). Acta Cryst. C47, 2702-2704.
Castañeda-Acosta, J., Fronczek, F. R. \& Fischer, N. H. (1992). Acta Cryst. C48, 179-181.
Cox, P. J., Sim, G. A. \& Herz, W. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 459-463.
Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft. The Netherlands.
Fischer, N. H., Olivier, E. J. \& Fischer, H. D. (1979). Progress in the Chemistry of Organic Natural Products, Vol. 38, edited by W. Herz, H. Grisebach \& G. B. Kirby. Vienna: Springer.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Korp, J. D., Bernal, I., Fischer, N. H., Leonard, C., Lee, 1.-Y. \& LeVan, N. (1982). J. Heterocycl. Chem. 19, 181-187.
Parodi, F. J., Fronczek, F. R. \& Fischer, N. H. (1989). J. Nal. Prod. 52, 554-566.
Schmalle, H. W., Klaska, K. H. \& Jarchow, O. (1977). Acta Cryst. B33, 2213-2217.
Seaman, F. C., Malcolm, A. J., Fronczek, F. R., Lee, I.-Y. \& Fischer, N. H. (1984). Phytochemistry, 23. 817-822.

Yao, J.-X. (1981). Acta Cryst. A37, 642-644.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1996). C52, 1266-1268

A Kryptoracemic Hydroperoxide

Guillermo A. Morales and Frank R. Fronczek
Department of Chemistry, Louisiana State University, Baton
Rouge, LA 70803-1804,USA. E-mail: fronz@chxray.dnet.lsu. edu

(Received 9 August 1995; accepted 9 November 1995)

Abstract

2-Trimethylsilyl-3-methyl-3H-benz[f]indol-3-yl hydroperoxide, $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Si}$, crystallizes in space group $P 2_{1}$ with two independent molecules of opposite handedness in the asymmetric unit. The two differ by a 60° rotation of the trimethylsilyl group with respect to the indole ring. The hydroperoxide $\mathrm{O}-\mathrm{O}$ distances in the two molecules are 1.453 (2) and 1.465 (3) \AA. The hydroperoxide groups form intermolecular hydrogen bonds of $\mathrm{O} \cdots \mathrm{N}$ (indole) lengths 2.763 (3) and 2.813 (3) A .

Comment

Of the several outcomes of crystallization from a racemic solution, one possibility is the formation of a kryptoracemate, in which the space group is enantiomorphic, but the asymmetric unit contains racemic pairs. This is by far the least common, according to Bernal (1995a), who finds less than three dozen examples. In most of the known cases, the two enantiomeric molecules are related by a pseudocenter (Bernal, 1995b). The present structure. (I), has no pseudocenters and the

(I)
two molecules differ in conformation, primarily in the rotation of the trimethylsilyl group about the $\mathrm{Si}-\mathrm{C}$ (indole) bond. In the A molecule, illustrated in Fig. 1(a), the C14A methyl group is approximately eclipsed by a C atom of the indole ring, the $\mathrm{C} 2 A-$ $\mathrm{C} 1 A-$ Sil $A-\mathrm{C} 14 A$ torsion angle being 8.1 (3) ${ }^{\circ}$. In the B molecule, the C16B methyl group is almost eclipsed by the N atom of the indole, forming the torsion angle $\mathrm{C} 16 B-\operatorname{Sil} B-\mathrm{C} 1 B-\mathrm{Nl} B$ of $4.9(3)^{\circ}$. The disposition of the hydroperoxy group with respect to the ring system is similar in the two molecules, with $\mathrm{Cl} 3-\mathrm{C} 2-\mathrm{Ol}-$ O 2 torsion angles of -163.7 (2) for A and $174.6(2)^{\circ}$ for B. The mean difference between the 22 bond distances in the two molecules is $0.007 \AA$, and the largest individual difference is 0.020 (4) \AA for $\mathrm{Si}-\mathrm{C} 14$.
The hydroperoxide $\mathrm{O}-\mathrm{O}$ distances, 1.453 (2) for A and 1.465 (3) \AA for B, are typical. A search of the

