C(6)	().7629 (2)	0.03190 (4)	0.1665 (3)	0.0185 (4)
C(7)	0.7390(2)	0.00035(4)	0.3338 (3)	0.0184 (4)
C(8)	0.7566 (2)	-0.03184(4)	0.1694 (3)	0.0185 (4)
C(9)	0.7315(2)	-0.06341(4)	0.3348(3)	0.0183 (4)
C(10)	0.7481(2)	-0.09552(4)	0.1699(3)	0.0215 (4)
CHD	()7212(2)	-0.12701(4)	() 3342(4)	0.0274 (5)

Table 2. Selected geometric parameters (Å, °)

	•	•	
N(1)—C(1)	1.494 (2)	C(6)-C(7)	1.522 (2)
C(1)—C(2)	1.514(2)	C(7)—C(8)	1.524 (2)
C(2)—C(3)	1.525 (2)	C(8)—C(9)	1.521 (2)
C(3)—C(4)	1.520(2)	C(9)—C(10)	1.521 (2)
C(4)—C(5)	1.524 (2)	C(10)-C(11)	1.519 (2)
C(5)C(6)	1.526(2)		
N(1) - C(1) - C(2)	111.3(1)	C(5)—C(6)—C(7)	113.8(1)
C(1) - C(2) - C(3)	111.7(1)	C(6)C(7)C(8)	113.8(1)
C(2)—C(3)—C(4)	113.3(1)	C(7)—C(8)—C(9)	113.9(1)
C(3)—C(4)—C(5)	113.8(1)	C(8)—C(9)—C(10)	113.9(1)
C(4)—C(5)—C(6)	113.6(1)	C(9)—C(10)—C(11)	113.8(1)
N(1)C(1)-	-C(2)-C(3)	179.4 (1)	
C(1)C(2)-	C(3)C(4)	-170.0(1)	
C(2)—C(3)-	C(4)C(5)	178.1(1)	
C(3)—C(4)-	C(5)C(6)	- 177.9 (1)	
C(4)—C(5)-	C(6)C(7)	179.4 (1)	
C(5)—C(6)-	-C(7)-C(8)	- 179.9 (1)	
C(6)—C(7)-	C(8)C(9)	- 179.6 (1)	
C(7)—C(8)-	-C(9)-C(10)	179.7 (1)	
C(8) - C(9) -	-C(10)-C(11)	-179.4(1)	

Table 3. Contact distances (Å)

$CI(1) \cdot \cdot \cdot N(1)$	3.209(1)	$O(1) \cdot \cdot \cdot N(1)$	2.845 (2)
$CI(1) \cdot \cdot \cdot N(1^{1})$	3.235 (2)	$Cl(1) \cdot \cdot \cdot O(1^m)$	3.180(1)
$Cl(1) \cdot \cdot \cdot N(1^n)$	3.353(1)	$CI(1) \cdot \cdot \cdot O(1^n)$	3.226(1)
Symmetry codes: (i	1	$-7.(ii) \times 1 + 7.(iii)$	r _

Symmetry codes: (1) $\frac{1}{2} + x$, $\frac{1}{2} - y$, 1 + z; (11) x, y, 1 + z; (11) $x - \frac{1}{2}$, $\frac{1}{2} - y$, z; (iv) $x - \frac{1}{2}$, $\frac{1}{2} - y$, 1 + z.

The crystal used for analysis was cooled with an Oxford Cryostream system (Cosier & Glazer, 1986).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993a). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1993b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: TEXSAN. Molecular graphics: TEXSAN. Software used to prepare material for publication: TEXSAN.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CF1038). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Ciajolo, M. R., Corradini, P. & Pavone, V. (1986). Gazz. Chim. Ital. 106, 807–816.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Gault, J. D., Gallardo, H. A. & Muller, H. J. (1985). Mol. Cryst. Liq. Cryst. 130, 163–177.
- Gilson, D. F. R., Kertes, A. S., Manley, R. St. J., Tsau, J. & Donnay, G. (1976). Can. J. Chem. 54, 765–768.
- Kind, R., Blinc, R., Arend, H., Muralt, P., Slak, J., Chapuis, G., Schenk, K. J. & Žekš, B. (1982). *Phys. Rev. A*, 26, 1816–1819.
- Molecular Structure Corporation (1993a). MSCIAFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1993b). TEXSAN. Single Crystal Structure Analysis Software. Version 1.6c. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

- Pinto, A. V. A., Vencato, I., Gallardo, H. & Mascarenhas, Y. P. (1987). *Mol. Cryst. Liq. Cryst.* **149**, 29–40.
- Schenk, K. J. & Chapuis, G. (1986). Acta Cryst. C42, 1076-1078.
- Seliger, J., Žagra, V., Blinc, R., Arend, H. & Chapuis, G. (1983). J. Chem. Phys. 78, 2661–2664.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Silver, J., Marsh, P. J. & Frampton, C. S. (1995). Acta Cryst. C51, 2432-2434.

Acta Cryst. (1996). C52, 1263-1266

The Guaianolide $11\beta H$,13-Dihydromicheliolide

JOSE CASTAÑEDA-ACOSTA, NIKOLAUS H. FISCHER AND FRANK R. FRONCZEK

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA. E-mail: fronz@chxray.dnet.lsu. edu

(Received 30 August 1995; accepted 10 November 1995)

Abstract

The lactone ring of the guaianolide-class sesquiterpene lactone $[3S-(3\alpha,3a\alpha,9\alpha,9a\alpha,9b\beta)]$ -3a,4,5,7,8,9,9a,9b-octahydro-9-hydroxy-3,6,9-trimethylazuleno[4,5-*b*]furan-2-(3*H*)-one, C₁₅H₂₂O₃, is *trans*-fused to the sevenmembered ring. Two molecules are present in the asymmetric unit; they differ only slightly in conformation. The seven-membered ring is in the chair conformation, with the local mirror bisecting the double bond. The lactone is in the envelope conformation, while the other five-membered ring adopts the half chair. The two independent molecules form a hydrogen-bonded dimer, with O···O distances 2.907 (3) and 2.966 (2) Å.

Comment

11 β H,13-Dihydromicheliolide, (1), is the major compound obtained from the BF₃-mediated rearrangement of 11 β H,13-dihydroparthenolide (Parodi, Fronczek & Fischer, 1989). The crystal structure of (1) was determined in order to confirm the relative configurations of the five asymmetric C atoms, and to compare its conformation and hydrogen bonding with those of micheliolide (Castañeda-Acosta, Fronczek & Fischer, 1991). The two independent molecules of the asymmetric unit have very similar conformations. The 17 endocyclic torsion angles of the two exhibit a mean difference of 3.4°, with the largest deviation, about C9—C10, of 8.4 (2)°. The most notable conformational difference between the two molecules involves the OH group, in which the O— H bond is *anti* to C3 in the A molecule and *anti* to C5 in the *B* molecule, in order to maximize hydrogen-bonding interactions, as described below. The overall conformation is similar to that of micheliolide (Castañeda-Acosta *et al.*, 1991), except for that of the lactone ring, which is a half chair in micheliolide. Bond distances for the two independent molecules (Table 2) agree well. The r.m.s. difference in the 20 intramolecular distances is 0.006 Å, and the largest individual difference is 0.012 (4) Å for O3—C4.

The two independent molecules form hydrogenbonded dimers, as illustrated in Fig. 1. OH group O3A donates an intermolecular hydrogen bond to OH group O3B, with an O···O distance of 2.907 (3) Å and an angle about H of 164 (4)°. The OH group of the B molecule is involved in an intermolecular interaction which may be viewed as a bifurcated hydrogen bond. Its shortest contact [2.966 (2) Å] is to O1A; however, the angle about H is 140 (3)°. The H atom points more nearly at the carbonyl O atom O2A, with an O—H···O angle of 166 (3)° and a O···O distance of 3.406 (3) Å.

It may be noted that there exists an alternate possible mode of hydrogen-bonded dimer formation, namely that with the two OH groups with switched donor

Fig. 1. The two independent molecules, with ellipsoids at the 40% probability level and H atoms represented with arbitrary radii.

and acceptor identities, and O3A donating a bifurcated interaction to O1B and O2B. That mode is not utilized in this structure; however, micheliolide exhibits similar dimer formation, and the two modes coexist with disordered H-atom positions (Castañeda-Acosta *et al.*, 1991). The two molecules are not independent, but are related by a twofold axis in that case.

Fig. 2 illustrates the packing, which features an approximate 2_1 screw axis parallel to the *a* axis at y = 0.83, z = 0.05. The screw axis is inexact, with the mean deviation of the 18 heavy atoms in molecule *A* and their equivalents in molecule *B* of 1.40 Å. The largest difference, 3.43 Å, is for O3, as a result of the difference in hydrogen bonding. The approximate screw axis is much more exact when atoms in the vicinity of O3 are excluded. The 14 atoms remaining when C3, C4, C15 and O3 are excluded exhibit a mean deviation of 0.95 Å.

Fig. 2. Projection of the structure down the *a* axis, illustrating the approximate 2_1 screw axis.

The structures of several closely related compounds have been reported. These include arteglasin A (Schmalle, Klaska & Jarchow, 1977), berlandin (Cox, Sim & Herz, 1975), 3α -epoxypumilin (Seaman, Malcolm, Fronczek, Lee & Fischer, 1984), 9α -thiophenoxy- $11\beta H$, 13-dihydromicheliolide (Castañeda-Acosta, Fronczek & Fischer, 1992), and pumilin (Korp *et al.*, 1982).

Experimental

Compound (1) was prepared by the BF₃-mediated rearrangement of $11\beta H$, 13-dihydroparthenolide (Parodi, Fronczek & Fischer, 1989). Crystals were grown from ethyl acetatehexane.

Crystal data

 $\begin{array}{ll} C_{15}H_{22}O_3 & \text{Mo } K\alpha \text{ radiation} \\ M_r = 250.34 & \lambda = 0.71073 \text{ Å} \end{array}$

JOSE CASTAÑEDA-ACOSTA et al.

Triclinic		Cell parameters	from 25	01 <i>B</i>	0.4020(2)	0.6677	(2) 0.1061 (2) 0.0721 (2)	0.0508 (5)
<i>P</i> 1	5	reflections		02B 03B	0.4707(3) 0.0829(2)	0.7420	(2) = 0.0721(2)	0.0804 (9)
a = 8.5033(8) A	Å	$\theta = 9 - 13^{\circ}$		C1B	0.3384 (3)	0.7353	(3) 0.4525 (2)	0.0399 (6)
b = 8.8856(6) A	Ą	$\mu = 0.078 \text{ mm}^{-1}$		C2 <i>B</i>	0.2845 (4)	0.5835	(3) 0.5131 (3)	0.0611 (9)
c = 10.773(1) A	A	T = 299 K		C3B	0.1521 (4)	0.4166	0.3989 (3) 0.2817 (2)	0.0575 (8)
$\alpha = 101.29(1)^{\circ}$		Needle fragment		C4B C5B	0.2282(3) 0.2876(3)	0.4567	(3) 0.2817(2) 0.3034(2)	0.0414 (6)
$\beta = 97.70(1)^{\circ}$		$0.75 \times 0.52 \times 0$.42 mm	C5B C6B	0.2870(3) 0.4410(3)	0.0507	(2) 0.3034(2) (2) 0.2438(2)	0.0352(0)
$\gamma = 118.42(1)^{\circ}$		Colorless		C7B	0.4691 (3)	0.9435	(2) (2) (2) (2)	0.0360 (6)
V = 677.2(3) Å	3			C8B	0.5605 (3)	1.0892	(3) 0.3682 (2)	0.0444 (7)
Z = 2				C9B	0.4385 (4)	1.0557	(3) 0.4624 (3)	0.0524 (8)
$D_r = 1.228 \text{ Mg}$	m ⁻³			C10B	0.4050 (3)	0.9061	$\begin{array}{ccc} (3) & 0.5216(2) \\ (3) & 0.1210(2) \end{array}$	0.0426 (7)
				CI1B C12B	0.3093(3) 0.4810(4)	0.9730	(3) (1310(2))	0.0445(7)
Data collection				C12B	0.5613 (5)	1.1050	0.0614(3) $0.0614(3)$	0.069(1)
East Maxim C		0 27.50		C14B	0.4356 (4)	0.9589	0(4) 0.6690(3)	0.0586 (9)
Enral-Nonius C	AD-4	$\theta_{\text{max}} = 27.5$		C15B	0.3829 (4)	0.4192	(3) (0.2768 (3)	0.0581 (8)
diffractometer	r	$h = 0 \rightarrow 11$		H3OA	0.006 (4)	0.288	(4) -0.040(3)	0.08(1)
$\theta/2\theta$ scans		$k = -11 \rightarrow 10$		HOB	0.056 (4)	0.244	(4) 0.155(3)	0.09(1)
Absorption corre	ection:	$l = -13 \rightarrow 13$						
none		3 standard reflec	tions	Та	hle ? Sele	ected geor	netric narameters	(Å °)
3099 measured	reflections	frequency: 120) min	14	ione 2. 5ere	cieu geon	neine purumeters	(21,)
3099 independe	nt reflections	intensity decay	/: < 1%	OIA - C6A		1.465 (2)	O1B - C6B	1.462 (3)
2776 observed r	reflections			01A - C12 024 - C12	A 4	1.343 (3)	O1B - C12B O2B - C12B	1.350(3)
$[I > 2\sigma(I)]$				02A - C4A		1.430(3)	O3B - C4B	1.442 (3)
				O3A—H3C	DA	0.88 (3)	O3B—H3OB	0.87 (4)
Refinement				CIA—C2A		1.517 (3)	C1 <i>B</i> —C2 <i>B</i>	1.515(4)
	-		C .	CIA—C5A		1.533 (3)	C1 <i>B</i> —C5 <i>B</i>	1.530(3)
Refinement on I	F	Atomic scatterin	g factors	C1A = C10	Α	1.340(3)	C1B - C10B	1.343 (3)
R = 0.040		from Internati	onal Tables	$C_{2A} = C_{3A}$		1.524 (4)	C_{3B} C_{3B}	1.518(3)
wR = 0.048		for X-ray Crys	tallography	C4A—C5A		1.559 (3)	C4B—C5B	1.555 (3)
S = 2.72		(1974, Vol. IV)	C4A—C15	Α	1.512 (4)	C4B—C15B	1.508 (5)
2776 reflections		Absolute configu	ration:	С5АС6А		1.507 (4)	C5B—C6B	1.515 (3)
331 parameters		assumed to co	rrespond	C6A - C7A		1.521 (3)	C6B - C'/B	1.519 (3)
H atoms: see be	low	to accepted ab	solute con-	C7A = C8A	A	1.522 (4)	C7B - C8B	1.513(3)
$w = 4F_{o}^{2}/[\sigma^{2}(F_{o}^{2})]$	3)	figuration of s	esquiter-	C8A—C9A		1.520 (4)	C8B—C9B	1.516 (4)
$+0.0004F_{a}^{4}$		pene lactones	from higher	C9A-C10	Α	1.513 (4)	C9B-C10B	1.509 (4)
$(\Delta/\sigma)_{\rm max} = 0.01$	14	plants (Fischer	, Olivier &	C10A—C1	4 <i>A</i>	1.505 (4)	C10B—C14B	1.514 (4)
$\Delta \rho_{\rm max} = 0.21 \ {\rm e}$	$Å^{-3}$	Fischer, 1979)		CHA-CI	2A	1.516 (3)	$C_{11}B - C_{12}B$	1.511 (3)
$\Delta \rho_{\rm min} = -0.06$	e Å ⁻³	,		CHA-CI	3A	1.512(3)	C118C138	1.513(5)
Extinction corre	ction:			C6A = O1A	-C12A	110.3 (1)	C6B = O1B = C12B	109.4 (2)
isotropic (Zac	hariasen.			$C_{4A} = O_{5A}$	-C5A	108(2) 1078(2)	$C_{4B} = C_{3B} = C_{5B}$	103(2) 108.5(2)
1963)	,			C2A-C1A		122.6 (2)	C2B— $C1B$ — $C10B$	123.6 (2)
Extinction coeff	icient:			C5A—C1A	C10A	129.5 (2)	C5B—C1B—C10B	127.7 (2)
$0.13(2) \times 10^{-10}$	-5			CIA—C2A	-C3A	104.5 (2)	C1 <i>B</i> —C2 <i>B</i> —C3 <i>B</i>	103.9 (2)
0.15 (2) / 10				C2A - C3A	-C4A	104.8 (2)	C2B - C3B - C4B	104.5 (2)
				03A—C4A		107.0(2)	03B - C4B - C5B 03B - C4B - C5B	1075(2)
Table 1. Fract	ional atomic	coordinates and	isotropic or	03A—C4A		111.1 (2)	O3B-C4B-C15B	110.0 (2)
equivalent	isotropic disp	lacement parame	ters (Å ²)	СЗА—С4А	-C5A	101.8 (2)	C3B—C4B—C5B	102.7 (2)
1	, ,	,		C3A—C4A	C15A	111.4 (2)	C3B—C4B—C15B	111.1 (3)
$U_{\rm iso}$ for H ato	ms; $U_{eq} = (1/3)$	$\sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j$ for	all others.	C5A - C4A	-CI5A	113.0(2)	C_{5B} C_{4B} C_{15B} C_{4B}	114.6(2)
r	۷.		Ung/Uling	CIA = CIA	-C6A	104.4(2) 1128(2)	$C1B \rightarrow C3B \rightarrow C4B$ $C1B \rightarrow C5B \rightarrow C6B$	104.3(2) 112.5(1)
O1A 0.0000	0.0000	0.0000	0.0467 (5)	C4A—C5A	—C6A	115.5(1)	C4B—C5B—C6B	116.3 (2)
O2A -0.0228	(3) -0.0571	(2) 0.1897 (2)	0.0669(7)	O1A—C6A	A—C5A	109.9 (2)	O1B-C6B-C5B	110.9(1)
O3A -0.0534	(2) 0.2618	(2) $-0.1212(2)$	0.0527 (5)	01A—C6A	A—C7A	103.1 (2)	O1B—C6B—C7B	102.9 (2)
C1A = -0.0774	(3) -0.0988	$\begin{array}{ccc} (2) & -0.3707(2) \\ (3) & 0.4227(2) \end{array}$	0.0362 (6)	C5A—C6A	-C7A	116.8 (2)	C5B-C6B-C7B	116.1 (2)
$C_{2A} = -0.0151$ $C_{3A} = -0.0274$	(3) 0.0525	(3) = 0.4327(2) (3) $= 0.3402(2)$	0.0483(7) 0.0503(7)	C6A = C7A	-C 11A	112.9(2) 1024(1)	C6B - C7B - C11B	101.5(2)
C4A 0.0209	(3) 0.1812	(2) -0.2044(2)	0.0417 (6)	C8A—C7A	—C11A	115.8 (2)	C8B—C7B—C11B	117.1 (2)
C5A -0.0845	(3) -0.0262	(2) -0.2315 (2)	0.0340 (5)	C7A—C8A	—С9А	113.2 (3)	C7B—C8B—C9B	113.0 (2)
C6A -0.0123	(3) -0.0924	(2) $-0.1327(2)$	0.0351 (6)	C8A—C9A	—C10A	119.7 (2)	C8B—C9B—C10B	117.8 (3)
C7A -0.1314	(3) -0.2894	$\begin{array}{ccc} (2) & -0.1422 (2) \\ (3) & 0.2400 (2) \end{array}$	0.0359 (6)	CIA = CI0	NA-C9A	127.0 (2)	C1B = C10B = C14B	124.8 (2)
-0.1095	(3) = -0.4125 (4) = -0.4276	(3) = -0.2490(2)	0.0483(7)		n-C14A	117.7(2)	$C1D \rightarrow C10D \rightarrow C14B$ $C9B \rightarrow C10B \rightarrow C14B$	120.8(2)
C10A = -0.1213	(3) -0.2644	(3) -0.4352(2)	0.0396 (6)	C7A-C11	$A \rightarrow C 12A$	101.8 (2)	C7B— $C11B$ — $C12B$	101.5 (2)
C11A -0.0736	-0.2906	(2) $-0.0035(2)$	0.0422 (6)	C7A-C11	A—C13A	116.9 (2)	C7B-C11B-C13B	117.3 (3)
C12A -0.0305	(3) -0.1085	(3) 0.0763 (2)	0.0452 (7)	C12A—C1	IA—C13A	113.7 (2)	C12B—C11B—C13B	113.1 (2)
C13A -0.2097	(4) -0.4446	(3) 0.0382 (3)	0.0605 (9)	01AC12	2A - 02A	120.9 (2)	O1B— $C12B$ — $O2B$	122.2 (2)
C14A -0.1045 C15A 0.2281	(3) -0.304/ (4) 0.2694	$\begin{array}{ccc} (3) & -0.5735(2) \\ (3) & -0.1507(3) \end{array}$	0.0483 (7)	01AC12	$A \rightarrow C \square A$	109.6 (2)	$O_{1B} - C_{12B} - C_{11B}$ $O_{2B} - C_{12B} - C_{11B}$	109.8 (2)
0.2201	0.2074						<i>-</i>	

The structure was solved by direct methods using *RANTAN* (Yao, 1981) and *DIRDIF* (Beurskens, 1984). An *E* map generated using *RANTAN* contained a recognizable fragment of one of the two independent molecules. *DIRDIF* was used to expand this fragment to the full structure. The OH H atoms were refined with isotropic displacement parameters, while others were placed in calculated positions guided by difference maps, with C—H 0.95 Å and $B_{iso}(H) = 1.3B_{eq}(C)$.

Data collection: CAD-4 diffractometer system (Enraf-Nonius, 1977). Cell refinement: CAD-4 diffractometer system. Data reduction: *PROCESS* in *MolEN* (Fair, 1990). Program(s) used to refine structure: *LSFM* in *MolEN*. Molecular graphics: *ORTEPII* (Johnson, 1976). Software used to prepare material for publication: *CIF IN* in *MolEN*.

The purchase of the diffractometer was made possible by a National Science Foundation chemical instrumentation grant, which we gratefully acknowledge. JCA thanks the Government of the Canary Islands and the Caja General de Ahorros de Canarias (Spain) for a fellowship. This research was supported by the Louisiana Education Quality Support Fund (86-89)-RD-A-13 and by the National Science Foundation Biotechnology Program (project No. EET-8713078).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry, along with a stereodrawing of the packing, have been deposited with the IUCr (Reference: BK1193). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures – an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
- Castañeda-Acosta, J., Fronczek, F. R. & Fischer, N. H. (1991). Acta Cryst. C47, 2702–2704.
- Castañeda-Acosta, J., Fronczek, F. R. & Fischer, N. H. (1992). Acta Cryst. C48, 179–181.
- Cox, P. J., Sim, G. A. & Herz, W. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 459-463.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Fischer, N. H., Olivier, E. J. & Fischer, H. D. (1979). *Progress in the Chemistry of Organic Natural Products*, Vol. 38, edited by W. Herz, H. Grisebach & G. B. Kirby. Vienna: Springer.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Korp, J. D., Bernal, I., Fischer, N. H., Leonard, C., Lee, I.-Y. & LeVan, N. (1982). J. Heterocycl. Chem. 19, 181–187.
- Parodi, F. J., Fronczek, F. R. & Fischer, N. H. (1989). J. Nat. Prod. 52, 554–566.
- Schmalle, H. W., Klaska, K. H. & Jarchow, O. (1977). Acta Cryst. B33, 2213–2217.
- Seaman, F. C., Malcolm, A. J., Fronczek, F. R., Lee, I.-Y. & Fischer, N. H. (1984). *Phytochemistry*, 23, 817–822.
- Yao, J.-X. (1981). Acta Cryst. A37, 642-644.
- Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1996). C52, 1266-1268

A Kryptoracemic Hydroperoxide

GUILLERMO A. MORALES AND FRANK R. FRONCZEK

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA. E-mail: fronz@chxray.dnet.lsu. edu

(Received 9 August 1995; accepted 9 November 1995)

Abstract

2-Trimethylsilyl-3-methyl-3*H*-benz[*f*]indol-3-yl hydroperoxide, $C_{16}H_{19}NO_2Si$, crystallizes in space group $P2_1$ with two independent molecules of opposite handedness in the asymmetric unit. The two differ by a 60° rotation of the trimethylsilyl group with respect to the indole ring. The hydroperoxide O—O distances in the two molecules are 1.453 (2) and 1.465 (3) Å. The hydroperoxide groups form intermolecular hydrogen bonds of O···N(indole) lengths 2.763 (3) and 2.813 (3) Å.

Comment

Of the several outcomes of crystallization from a racemic solution, one possibility is the formation of a kryptoracemate, in which the space group is enantiomorphic, but the asymmetric unit contains racemic pairs. This is by far the least common, according to Bernal (1995*a*), who finds less than three dozen examples. In most of the known cases, the two enantiomeric molecules are related by a pseudocenter (Bernal, 1995*b*). The present structure. (I), has no pseudocenters and the

two molecules differ in conformation, primarily in the rotation of the trimethylsilyl group about the Si—C(indole) bond. In the A molecule, illustrated in Fig. 1(a), the C14A methyl group is approximately eclipsed by a C atom of the indole ring, the C2A— C1A—Si1A—C14A torsion angle being 8.1 (3)°. In the B molecule, the C16B methyl group is almost eclipsed by the N atom of the indole, forming the torsion angle C16B—Si1B—C1B—N1B of 4.9 (3)°. The disposition of the hydroperoxy group with respect to the ring system is similar in the two molecules, with C13—C2—O1— O2 torsion angles of -163.7 (2) for A and 174.6 (2)° for B. The mean difference between the 22 bond distances in the two molecules is 0.007 Å, and the largest individual difference is 0.020 (4) Å for Si—C14.

The hydroperoxide O—O distances, 1.453 (2) for A and 1.465 (3) Å for B, are typical. A search of the